Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1819: 148542, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604315

RESUMO

Paradoxically, while acute pain leads to transiently elevated corticosterone, chronic pain does not result in persistently elevated corticosterone. In the sciatic nerve chronic constriction injury (CCI) model of chronic pain, we have shown that the same nerve injury produces a range of behavioural outcomes, each associated with distinctive adaptations to the HPA-axis to achieve stable plasma corticosterone levels. We also demonstrated that CRF and GR expression in the paraventricular hypothalamus (PVH) was increased in rats that showed persistent changes to their social behaviours during Resident-Intruder testing ('Persistent Effect' rats) when compared to rats that showed no behavioural changes ('No Effect' rats). In this study, we investigated whether these changes were driven in part by altered sensitivity of the brainstem catecholaminergic pathways (known to regulate the PVH) to glucocorticoids. GR expression in adrenergic (C1,C2) and noradrenergic (A1,A2) cells was determined using immunohistochemistry in behaviourally tested CCI rats and in uninjured controls. We found no differences between Persistent Effect and No Effect rats in (1) the glucocorticoid sensitivity of these cells, or (2) the numbers of adrenergic and noradrenergic cells in each region. However, we discovered an overall reduction in GR expression in the non-catecholaminergic cells of these regions in both experimental groups when compared to uninjured controls, most likely attributable to the repeated Resident-Intruder testing. Taken together, these data suggest strongly that brainstem mechanisms are unlikely to play a key role in the rebalancing of the HPA-axis triggered by CCI, increasing the probability that these changes are driven by supra-hypothalamic regions.


Assuntos
Dor Crônica , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Ratos Sprague-Dawley , Corticosterona , Interação Social , Comportamento Animal/fisiologia , Neuropatia Ciática/metabolismo , Nervo Isquiático/lesões , Adrenérgicos
2.
Physiol Behav ; 263: 114116, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773736

RESUMO

BACKGROUND: Animal models of placebo analgesia and nocebo hyperalgesia have great potential to assist in the development of novel treatments for chronic pain that exploit or inhibit these phenomena. This study sought to elicit both conditioned placebo analgesia and conditioned nocebo hyperalgesia in rats with chronic neuropathic pain using non-pharmacological, contextual conditioning approaches, similar to those most often used in humans. METHODS: Sciatic nerve-injured male Sprague-Dawley rats (n = 80), and sham controls (n = 16), underwent a conditioning procedure in which three different thermal stimulus intensities (4 °C, 20 °C or 30 °C) were paired with contextual cues. Injured hind paw withdrawal behaviours were used to determine pain sensitivity, and either conditioned analgesia or conditioned hyperalgesia was evoked by re-exposing the rats to the same context with either an increased or decreased thermal stimulus, respectively. RESULTS: Stronger conditioned analgesia and conditioned hyperalgesia were seen when rats were conditioned in a more complex environment, highlighting the importance of context in these processes. Rats that did not undergo conditioning procedures showed fewer hind paw withdrawals, indicating a learned component to these pain behaviours. CONCLUSIONS: Our data call attention to context and learning as two critical factors in the development of placebo and nocebo effects in male rodents with a neuropathic injury. Additionally, the response-conditioning model we present in this study affords better comparisons between human and animal studies, in particular for those seeking to identify commonalities in the neurobiological mechanisms of placebo and nocebo responses.


Assuntos
Analgesia , Neuralgia , Humanos , Ratos , Masculino , Animais , Hiperalgesia/tratamento farmacológico , Efeito Nocebo , Ratos Sprague-Dawley
3.
J Neurosci Res ; 100(10): 1890-1907, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35853016

RESUMO

Chronic pain is more prevalent and reported to be more severe in women. Opioid analgesics are less effective in women and result in stronger nauseant effects. The neurobiological mechanisms underlying these sex differences have yet to be clearly defined, though recent research has suggested neuronal-glial interactions are likely involved. We have previously shown that similar to people, morphine is less effective at reducing pain behaviors in female rats. In this study, we used the immunohistochemical detection of glial fibrillary acidic protein (GFAP) expression to investigate sex differences in astrocyte density and morphology in six medullary regions known to be modulated by pain and/or opioids. Morphine administration had small sex-dependent effects on overall GFAP expression, but not on astrocyte morphology, in the rostral ventromedial medulla, the subnucleus reticularis dorsalis, and the area postrema. Significant sex differences in the density and morphology of GFAP immunopositive astrocytes were detected in all six regions. In general, GFAP-positive cells in females showed smaller volumes and reduced complexity than those observed in males. Furthermore, females showed lower overall GFAP expression in all regions except for the area postrema, the critical medullary region responsible for opioid-induced nausea and emesis. These data support the possibility that differences in astrocyte activity might underlie the sex differences seen in the processing of opioids in the context of chronic neuropathic pain.


Assuntos
Morfina , Neuralgia , Analgésicos Opioides/farmacologia , Animais , Astrócitos/metabolismo , Tronco Encefálico , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Morfina/farmacologia , Neuralgia/metabolismo , Neuroglia/metabolismo , Ratos , Caracteres Sexuais
4.
Curr Opin Support Palliat Care ; 16(2): 71-77, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35639572

RESUMO

PURPOSE OF REVIEW: It is well established in experimental settings that brainstem circuits powerfully modulate the multidimensional experience of pain. This review summarizes current understanding of the roles of brainstem nuclei in modulating the intensity of pain, and how these circuits might be recruited therapeutically for pain relief in chronic and palliative settings. RECENT FINDINGS: The development of ultra-high field magnetic resonance imaging and more robust statistical analyses has led to a more integrated understanding of brainstem function during pain. It is clear that a number of brainstem nuclei and their overlapping pathways are recruited to either enhance or inhibit incoming nociceptive signals. This review reflects on early preclinical research, which identified in detail brainstem analgesic function, putting into context contemporary investigations in humans that have identified the role of specific brainstem circuits in modulating pain, their contribution to pain chronicity, and even the alleviation of palliative comorbidities. SUMMARY: The brainstem is an integral component of the circuitry underpinning pain perception. Enhanced understanding of its circuitry in experimental studies in humans has, in recent years, increased the possibility for better optimized pain-relief strategies and the identification of vulnerabilities to postsurgical pain problems. When integrated into the clinical landscape, these experimental findings of brainstem modulation of pain signalling have the potential to contribute to the optimization of pain management and patient care from acute, to chronic, to palliative states.


Assuntos
Dor Crônica , Analgésicos/uso terapêutico , Tronco Encefálico , Humanos , Imageamento por Ressonância Magnética , Percepção da Dor
5.
J Neuroendocrinol ; 34(6): e13131, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35487591

RESUMO

Increased glucocorticoids characterise acute pain responses, but not the chronic pain state, suggesting specific modifications to the hypothalamic-pituitary-adrenal (HPA)-axis preventing the persistent nature of chronic pain from elevating basal glucocorticoid levels. Individuals with chronic pain mount normal HPA-axis responses to acute stressors, indicating a rebalancing of the circuits underpinning these responses. Preclinical models of chronic neuropathic pain generally recapitulate these clinical observations, but few studies have considered that the underlying neuroendocrine circuitry may be altered. Additionally, individual differences in the behavioural outcomes of these pain models, which are strikingly similar to the range of behavioural subpopulations that manifest in response to stress, threat and motivational cues, may also be reflected in divergent patterns of HPA-axis activity, which characterises these other behavioural subpopulations. We investigated the effects of sciatic nerve chronic constriction injury (CCI) on adrenocortical and hypothalamic markers of HPA-axis activity in the subpopulation of rats showing persistent changes in social interactions after CCI (Persistent Effect) and compared them with rats that do not show these changes (No Effect). Basal plasma corticosterone did not change after CCI and did not differ between groups. However, adrenocortical sensitivity to adrenocorticotropic hormone (ACTH) diverged between these groups. No Effect rats showed large increases in basal plasma ACTH with no change in adrenocortical melanocortin 2 receptor (MC2 R) expression, whereas Persistent Effect rats showed modest decreases in plasma ACTH and large increases in MC2 R expression. In the paraventricular nucleus of the hypothalamus of Persistent Effect rats, single labelling revealed significantly increased numbers of corticotropin releasing factor (CRF) +ve and glucocorticoid receptor (GR) +ve neurons. Double-labelling revealed fewer GR +ve CRF +ve neurons, suggesting a decreased hypothalamic sensitivity of CRF neurons to circulating corticosterone in Persistent Effect rats. We suggest that in addition to rebalancing the HPA-axis, the increased CRF expression in Persistent Effect rats contributes to changes in complex behaviours, and in particular social interactions.


Assuntos
Dor Crônica , Sistema Hipófise-Suprarrenal , Hormônio Adrenocorticotrópico/metabolismo , Animais , Dor Crônica/metabolismo , Corticosterona , Hormônio Liberador da Corticotropina/metabolismo , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário , Ratos , Receptores de Glucocorticoides/metabolismo , Nervo Isquiático/metabolismo , Comportamento Social
6.
J Neurochem ; 158(5): 1151-1171, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287873

RESUMO

Individual differences in the effects of a chronic neuropathic injury on social behaviours characterize both the human experience and pre-clinical animal models. The impacts of these changes to the well-being of the individual are often underappreciated. Earlier work from our laboratory using GeneChip® microarrays identified increased cholecystokinin (CCK) gene expression in the periaqueductal gray (PAG) of rats that showed persistent changes in social interactions during a Resident-Intruder encounter following sciatic nerve chronic constriction injury (CCI). In this study, we confirmed these gene regulation patterns using RT-PCR and identified the anatomical location of the CCK-mRNA as well as the translated CCK peptides in the midbrains of rats with a CCI. We found that rats with persistent CCI-induced changes in social behaviours had increased CCK-mRNA in neurons of the ventrolateral PAG and dorsal raphe nuclei, as well as increased CCK-8 peptide expression in terminal boutons located in the lateral and ventrolateral PAG. The functional significance of these changes was explored by microinjecting small volumes of CCK-8 into the PAG of uninjured rats and observing their Resident-Intruder social interactions. Disturbances to social interactions identical to those observed in CCI rats were evoked when injection sites were located in the rostral lateral and ventrolateral PAG. We suggest that CCI-induced changes in CCK expression in these PAG regions contributes to the disruptions to social behaviours experienced by a subset of individuals with neuropathic injury.


Assuntos
Colecistocinina/biossíntese , Reação de Fuga/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Neuropatia Ciática/metabolismo , Interação Social , Animais , Reação de Fuga/efeitos dos fármacos , Masculino , Microinjeções/métodos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/psicologia , Ratos , Ratos Sprague-Dawley , Neuropatia Ciática/patologia , Neuropatia Ciática/psicologia , Sincalida/administração & dosagem
7.
Behav Pharmacol ; 32(6): 479-486, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34320522

RESUMO

Many people with chronic pain escalate their opioid dosage to counteract tolerance effects. A treatment regimen consisting of placebos admixed with opioids has been suggested as a possible therapeutic option that could reduce the harm of long-term opioid use. However, the analgesic efficacy of such a regimen requires further investigation before widespread adoption. We have recently reported that a 4-day pharmacological conditioning procedure, which paired morphine (6 mg/kg) with contextual cues, elicited placebo analgesia in subpopulations of male (35%) and female (25%) rats with sciatic nerve chronic constriction injury (CCI). Here, we investigated how an escalating morphine dosage during conditioning affects the incidence and strength of placebo analgesia. Forty-four male, Sprague-Dawley rats received CCI. Thirty-eight (86%) rats developed strong cold allodynia by day 6 post-surgery, as measured by hind paw withdrawal (HPW) behaviour on a 5°C cold plate (120 s). In this experiment, pharmacological conditioning consisted of an escalating morphine dose over 4 days (8/9/10/12 mg/kg). This dosing regimen produced strong reductions in HPW behaviour and counteracted the effects of morphine tolerance during conditioning. However, none of the rats given the placebo treatment (n = 12) demonstrated reductions in HPW behaviour when morphine was substituted for saline (i.e. placebo analgesia), but instead showed a strong behavioural response (rearing). These results demonstrate that a high, escalating dose of morphine failed to produce conditioned placebo analgesia in rats with CCI. It is possible that admixing placebos with opioids may be similarly ineffective in chronic pain patients when the opioids regimen is high or escalating.


Assuntos
Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Morfina/farmacologia , Neuralgia , Efeito Placebo , Analgésicos Opioides/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Dor Crônica/tratamento farmacológico , Dor Crônica/psicologia , Modelos Animais de Doenças , Cálculos da Dosagem de Medicamento , Efeitos Adversos de Longa Duração/induzido quimicamente , Efeitos Adversos de Longa Duração/prevenção & controle , Neuralgia/tratamento farmacológico , Neuralgia/psicologia , Ratos , Ratos Sprague-Dawley
8.
Neuroscience ; 457: 51-73, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285237

RESUMO

Placebo analgesia has great potential to overcome the inadequacies of current drug therapies to treat conditions of chronic pain. The rostral ventromedial medulla (RVM) has been implicated as a critical relay in the antinociceptive pathway underpinning placebo analgesia in humans. We developed a model of opiate-conditioned placebo analgesia in rats with neuropathic injury to identify medullary nuclei active during placebo analgesia. Using female and male rats the degree of thermal allodynia was first determined following nerve injury, and a pharmacological conditioning procedure, pairing contextual cues with the experience of morphine-induced analgesia, was used to elicit placebo analgesic reactions. This protocol revealed clear subpopulations of placebo reactors (36% of males, 25% of females) and non-reactors in proportions similar to those reported in human studies. We detected injury-specific c-Fos expression in the gracile nucleus and morphine-specific c-Fos expression in the serotonergic midline raphe nuclei and the caudal nuclei of the solitary tract. However, c-Fos expression did not differ between placebo reactors and non-reactors in either serotonergic or non-serotonergic neurons of the RVM. Despite a subpopulation of rats demonstrating placebo reactions, we found no evidence for enhanced activity in the nuclei from which the classical RVM → spinal cord descending analgesic pathways emerge.


Assuntos
Analgesia , Neuralgia , Animais , Feminino , Masculino , Bulbo , Morfina/farmacologia , Neuralgia/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
9.
Brain Res ; 1750: 147171, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33132167

RESUMO

The ability to cope with a novel acute stressor in the context of ongoing chronic stress is of critical adaptive value. The hypothalamic-pituitary-adrenal (HPA) axis contributes to the integrated physiological and behavioural responses to stressors. Under conditions of chronic stress, the posterior portion of the paraventricular thalamic nucleus (pPVT) mediates the 'habituation' of HPA-axis responses, and also facilitates HPA-axis reactivation to novel acute stressors amidst this habituation. Since pPVT neurons are sensitive to the inhibitory effects of circulating glucocorticoids, a glucocorticoid-insensitive neural pathway to the pPVT is likely essential for this reactivation process. The pPVT receives substantial inputs from neurons of the periaqueductal gray (PAG) region, which is organised into longitudinal columns critical for processing acute and/or chronic stressors. We investigated the columnar organisation of PAG â†’ pPVT projections and for the first time determined their glucocorticoid sensitivity. Retrograde tracer injections were made into different rostro-caudal regions of the pPVT, and their PAG columnar inputs compared. Glucocorticoid receptor immunoreactivity (GR-ir) was quantified in these projection neurons. We found that the dorsolateral PAG projected most strongly to rostral pPVT and the ventrolateral PAG most strongly to the caudal pPVT. Despite abundant GR-ir in the PAG, we report a striking absence of GR-ir in PAG â†’ pPVT neurons. Our data suggests that these pathways, which are insensitive to the direct actions of circulating glucocorticoids, likely play an important role in both the habituation of HPA-axis to chronic stressors and its facilitation to acute stressors in chronically stressed rats.


Assuntos
Núcleos da Linha Média do Tálamo/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/patologia , Vias Aferentes/metabolismo , Animais , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Núcleos da Linha Média do Tálamo/metabolismo , Vias Neurais/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Estresse Fisiológico/fisiologia , Tálamo/metabolismo
10.
Neurosci Lett ; 728: 134982, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32320718

RESUMO

The sensory changes triggered by peripheral nerve injury result from functional changes in both neurons and glia in the dorsal horn of the spinal cord. Whether the disrupted affective-motivational states often comorbid with injury-evoked changes in sensation are driven directly by these functional changes is a question only recently investigated. Using a combination of GeneChip microarrays and RT-PCR techniques we identified differences in mRNA expression unique to rats with sustained changes to their social behaviour following sciatic nerve chronic constriction injury (CCI). Amongst these changes were the mRNAs encoding several of the NMDA subunits and the CB1 receptor. However, as protein translation is not a necessary consequence of the upregulation or downregulation of genes we decided to evaluate the functional significance of our initial observations using immunohistochemical detection of their translated protein products to determine their location and abundance in the lumbar spinal cord. Spinal cord tissue from rats with ('Affected'), and without ('Unaffected') changes in social behaviour after CCI was compared with tissue from uninjured controls. The expression of NMDA-1 (NR1) subunit, NMDA-2D subunit, Cannabinoid Receptor 1 (CB1), Glucocorticoid Receptor (GR) and Glial Fibrillary Acidic Protein (GFAP) immunoreactivities was quantified for these rats and revealed that nerve injury increased the expression of NMDA-2D, CB1 and GFAP immunoreactivity compared to uninjured controls. However, these changes were not specific to rats whose social behaviours were 'Affected' or 'Unaffected' by the nerve injury. Our data thus suggest that the development and expression of changes in social behaviour seen in a proportion of rats following CCI are unlikely to be directly related to the spinal changes in NMDA-2D, CB1 and GFAP expression induced by the nerve injury.


Assuntos
Receptor CB1 de Canabinoide/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal/metabolismo , Animais , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/genética , Receptores de N-Metil-D-Aspartato/genética , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo
11.
Brain Res ; 1719: 253-262, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31194948

RESUMO

The ability to cope with acute stressors is impaired in people with chronic neuropathic injuries. The regulation of stress coping responses depends critically on several parallel interconnected neural circuits, one of which originates in the Locus Coeruleus. In rats, chronic constriction injury (CCI) and acute stress each modulate noradrenergic activity of the Locus Coeruleus (LC) although with different temporal patterns. This study investigated the effects of CCI on the neuronal activity of the LC to acute restraint stress using the immunohistochemical detection of Fos-family protein expression. Male Sprague-Dawley rats underwent CCI surgery and 11 days later were restrained for 15 min. The number and location of single-labelled neurons (c-Fos, FosB/ΔFosB and tyrosine hydroxylase (TH) immunoreactive) neurons and double labelled neurons (c-Fos, or FosB/ΔFosB with TH) were quantified for the LC and surrounding regions. Comparisons were made with rats that underwent sham surgery or anaesthesia (20 min). Restraint triggered a struggling response in all rats. CCI attenuated restraint-induced Fos expression in LC neurons. A significant proportion (30-50%) of these LC Fos positive neurons did not contain TH. These data suggest that nerve injury might impair the ordinary cellular response of the LC to an acute stress. The association of stress-related disorders in people with neuropathic injuries suggests that the observations made in this study may reflect a part of the mechanism underlying these clinical comorbidities.


Assuntos
Locus Cerúleo/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Expressão Gênica/genética , Locus Cerúleo/fisiologia , Masculino , Neurônios/metabolismo , Norepinefrina/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Estresse Fisiológico/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...